Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Infect Dis ; 22(1): 86, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073864

RESUMEN

BACKGROUND: Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure. METHODS: We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity. RESULTS: Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability. CONCLUSIONS: The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria. Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Animales , Formación de Anticuerpos , Niño , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum , Esquizontes
2.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34264864

RESUMEN

BACKGROUNDNaturally acquired immunity to malaria is incompletely understood. We used controlled human malaria infection (CHMI) to study the impact of past exposure on malaria in Kenyan adults in relation to infection with a non-Kenyan parasite strain.METHODSWe administered 3.2 × 103 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Challenge, NF54 West African strain) by direct venous inoculation and undertook clinical monitoring and serial quantitative PCR (qPCR) of the 18S ribosomal RNA gene. The study endpoint was met when parasitemia reached 500 or more parasites per µL blood, clinically important symptoms were seen, or at 21 days after inoculation. All volunteers received antimalarial drug treatment upon meeting the endpoint.RESULTSOne hundred and sixty-one volunteers underwent CHMI between August 4, 2016, and February 14, 2018. CHMI was well tolerated, with no severe or serious adverse events. Nineteen volunteers (11.8%) were excluded from the analysis based on detection of antimalarial drugs above the minimal inhibitory concentration or parasites genotyped as non-NF54. Of the 142 volunteers who were eligible for analysis, 26 (18.3%) had febrile symptoms and were treated; 30 (21.1%) reached 500 or more parasites per µL and were treated; 53 (37.3%) had parasitemia without meeting thresholds for treatment; and 33 (23.2%) remained qPCR negative.CONCLUSIONWe found that past exposure to malaria, as evidenced by location of residence, in some Kenyan adults can completely suppress in vivo growth of a parasite strain originating from outside Kenya.TRIAL REGISTRATIONClinicalTrials.gov NCT02739763.FUNDINGWellcome Trust.


Asunto(s)
Inmunidad Adaptativa/genética , ADN Protozoario/análisis , Malaria Falciparum/genética , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa/métodos , Adulto , Anciano , Animales , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Kenia/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Estudios Retrospectivos
3.
Wellcome Open Res ; 5: 186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134555

RESUMEN

Background. International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods. We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results. In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions. Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings.

4.
Wellcome Open Res ; 5: 162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35330938

RESUMEN

Background: The global COVID-19 outbreak relies on a quantitative real-time polymerase chain reaction (qRT-PCR) for the detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2), to facilitate the roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in our setting, where the supply of testing reagents is limited. Methods: Standards generated from a serially-diluted positive control and previously identified positive/negative samples were used to determine the optimal volumes of the qRT-PCR reagents and to evaluate the validity and performance of four assays: Charité Berlin and European Virus Archive - GLOBAL (EVAg) primer-probe sets, and DAAN and Beijing Genomics Institute (BGI) premixed commercial kits. A multiplex and singleplex RT-PCR kit was used with the two primer-probe sets and the recommended assay volumes of the two premixed kits were altered. Results: In comparison to the multiplex RT-PCR kit, the singleplex RT-PCR kit combined with the primer-probe sets yielded consistent cycle threshold (Ct) values across the different titrations tested. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit showed incomparable Ct values and inconsistent results between batches using the manufacturer's recommended volumes. Conclusion: We achieved a 2.5-fold and 4-fold increase in the number of tests/kit for the premixed kits and the primer-probe sets, respectively. The primer-probe set assays were reliable and consistent, and we preferred a combination of an EVAg and a Berlin target. Any inconclusive result was repeated by different individuals following the same protocol. DAAN was a consistent and reliable assay even at lower concentrations from the stated recommendations. BGI in contrast, required dilution to improve its performance and was hence an assay that was used in combination with EVAg or Berlin targets.

5.
BMC Med ; 17(1): 60, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30862316

RESUMEN

BACKGROUND: There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. METHODS: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). RESULTS: We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. CONCLUSION: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.


Asunto(s)
Enfermedades del Sistema Inmune/inmunología , Malaria/inmunología , Niño , Preescolar , Humanos
6.
J Infect Dis ; 216(9): 1091-1098, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28973672

RESUMEN

Background: Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods: We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results: Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion: Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Pruebas Diagnósticas de Rutina , Brotes de Enfermedades/prevención & control , Malaria/diagnóstico , Microscopía , Reacción en Cadena de la Polimerasa , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria/epidemiología , Masculino , Prevalencia
7.
BMC Infect Dis ; 17(1): 585, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835215

RESUMEN

BACKGROUND: The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. METHODS: Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants' antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. RESULTS: We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. CONCLUSIONS: This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. TRIAL REGISTRATION: Pan African Clinical Trial Registry: PACTR201211000433272 . Date of registration: 10th October 2012.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto , Animales , Anticuerpos Antiprotozoarios/genética , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Kenia , Estudios Longitudinales , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25830326

RESUMEN

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anticuerpos Antivirales/sangre , Artritis/etiología , Dermatitis/etiología , Método Doble Ciego , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/aislamiento & purificación , Exantema/etiología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes , Vesiculovirus , Viremia , Esparcimiento de Virus
9.
Sci Transl Med ; 7(286): 286re5, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25947165

RESUMEN

Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016).


Asunto(s)
Adenovirus de los Simios/inmunología , Esquemas de Inmunización , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/inmunología , Adulto , Algoritmos , Animales , Epítopos/inmunología , Genotipo , Humanos , Estimación de Kaplan-Meier , Kenia , Masculino , Pan troglodytes , Plasmodium falciparum , Reacción en Cadena de la Polimerasa , Modelos de Riesgos Proporcionales , Adulto Joven
10.
Malar J ; 14: 33, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25627033

RESUMEN

BACKGROUND: Controlled human malaria infection (CHMI) studies increasingly rely on nucleic acid test (NAT) methods to detect and quantify parasites in the blood of infected participants. The lower limits of detection and quantification vary amongst the assays used throughout the world, which may affect the ability of mathematical models to accurately estimate the liver-to-blood inoculum (LBI) values that are used to judge the efficacy of pre-erythrocytic vaccine and drug candidates. METHODS: Samples were collected around the time of onset of pre-patent parasitaemia from subjects who enrolled in two different CHMI clinical trials. Blood samples were tested for Plasmodium falciparum 18S rRNA and/or rDNA targets by different NAT methods and results were compared. Methods included an ultrasensitive, large volume modification of an established quantitative reverse transcription PCR (qRT-PCR) assay that achieves detection of as little as one parasite/mL of whole blood. RESULTS: Large volume qRT-PCR at the University of Washington was the most sensitive test and generated quantifiable data more often than any other NAT methodology. Standard quantitative PCR (qPCR) performed at the University of Oxford and standard volume qRT-PCR performed at the University of Washington were less sensitive than the large volume qRT-PCR, especially at 6.5 days after CHMI. In these trials, the proportion of participants for whom LBI could be accurately quantified using parasite density value greater than or equal to the lower limit of quantification was increased. A greater improvement would be expected in trials in which numerous subjects receive a lower LBI or low dose challenge. CONCLUSIONS: Standard qPCR and qRT-PCR methods with analytical sensitivities of ~20 parasites/mL probably suffice for most CHMI purposes, but the newly developed large volume qRT-PCR may be able to answer specific questions when more analytical sensitivity is required.


Asunto(s)
Malaria/diagnóstico , Malaria/parasitología , Reacción en Cadena de la Polimerasa/métodos , Adulto , ADN Protozoario/sangre , Femenino , Humanos , Límite de Detección , Malaria/epidemiología , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Parasitemia/diagnóstico , Parasitemia/parasitología , ARN Ribosómico 18S/genética , Adulto Joven
11.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24930599

RESUMEN

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Asunto(s)
Adenovirus de los Simios/genética , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/genética , Adulto , Enfermedades Endémicas , Gambia/epidemiología , Humanos , Inmunización Secundaria , Kenia/epidemiología , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Proteínas Protozoarias/genética , Linfocitos T/inmunología , Reino Unido
12.
J Immunol ; 192(4): 1753-61, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24453249

RESUMEN

The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4(+) T cell responses to a small semiconserved area of the Duffy binding-like domain (DBL)α-domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4(+) T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag-specific CD4(+)IL-4(+) T cells at the acute episode remained episode free for longer than children who induced other types of CD4(+) T cell responses. These results suggest that a wide range of DBLα-tag-specific CD4(+) T cell responses were induced in children with mild malaria and, in the case of CD4(+)IL-4(+) T cell responses, were associated with protection from clinical episodes.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos T CD4-Positivos/inmunología , Malaria Falciparum/inmunología , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/inmunología , Niño , Preescolar , Estudios de Cohortes , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Humanos , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Kenia , Masculino , Datos de Secuencia Molecular , Plasmodium falciparum/inmunología , Estructura Terciaria de Proteína
13.
Front Microbiol ; 5: 686, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566206

RESUMEN

BACKGROUND: Controlled human malaria infection (CHMI) studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD) and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI) to Plasmodium falciparum. METHODS: We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272). RESULTS: All participants developed blood-stage infection confirmed by quantitative polymerase chain reaction (qPCR). However one volunteer (110) remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR) (1.3) in comparison to the other 27 volunteers (median 11.1). A significant correlation was seen between PMR and screening anti-schizont Enzyme Linked Immunosorbent Assays (ELISA) OD (p = 0.044, R = -0.384) but not when volunteer 110 was excluded from the analysis (p = 0.112, R = -0.313). CONCLUSIONS: PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.

14.
PLoS One ; 8(6): e65960, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23823332

RESUMEN

BACKGROUND: Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection. METHODOLOGY: We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18). Six participants received 2,500 sporozoites intradermally (ID), six received 2,500 sporozoites intramuscularly (IM) and six received 25,000 sporozoites IM. FINDINGS: Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test). CONCLUSIONS: 2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants. TRIAL REGISTRATION: ClinicalTrials.gov NCT01465048.


Asunto(s)
Malaria Falciparum/parasitología , Agujas , Jeringas , Criopreservación , Ensayo de Inmunoadsorción Enzimática , Humanos , Malaria Falciparum/prevención & control , Proyectos Piloto
15.
PLoS One ; 8(3): e57726, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526949

RESUMEN

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). METHODOLOGY: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. RESULTS: ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). CONCLUSIONS: ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. TRIAL REGISTRATION: Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Plasmodium falciparum/inmunología , Adenovirus de los Simios/genética , Adulto , Antígenos de Protozoos/genética , Gambia , Vectores Genéticos , Humanos , Inmunización Secundaria , Interferón gamma/sangre , Kenia , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Adulto Joven
16.
J Immunol Methods ; 375(1-2): 68-74, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21963949

RESUMEN

Memory B cells (MBCs) are a key component of long term humoral immunity to many human infectious diseases. Despite their importance, we know little about the generation or maintenance of antigen-(Ag)-specific MBCs in humans in response to infection. A frequently employed method for quantifying Ag-specific MBCs in human peripheral blood (Crotty et al., 2004) relies on the ability of MBCs but not naïve B cells to differentiate into antibody secreting cells (ASCs) in response to polyclonal activators and Toll-like receptor agonists in vitro and the measurement of Ag-specific ASCs by ELISPOT assays. Here we report on studies to optimize the efficiency of this ELISPOT-based assay and to apply this assay to the detection of Plasmodium falciparum (Pf)-specific MBCs in adults living in a malaria endemic area where immunity to Pf is acquired through natural infection. We show that the addition of IL-10 to in vitro cultures of human peripheral blood mononuclear cells increased the efficiency of the assay from 10% to over 90% without increasing the ASC burst size and without any substantial increase in background from naïve B cells or plasma cells (PCs). Using this assay we were able to quantify the frequency of Pf-specific MBCs in peripheral blood of adults living in a malaria endemic area. Thus, this highly efficient assay appears to be well suited to field studies of the generation and maintenance of MBCs where the volumes of blood obtainable are often limiting.


Asunto(s)
Linfocitos B/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Epítopos de Linfocito B/inmunología , Memoria Inmunológica/inmunología , Plasmodium falciparum/inmunología , Células Productoras de Anticuerpos/inmunología , Citometría de Flujo/métodos , Humanos , Interleucina-10/inmunología , Leucocitos Mononucleares/inmunología , Malaria/inmunología , Células Plasmáticas/inmunología
17.
PLoS One ; 7(12): e52870, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300801

RESUMEN

The candidate malaria vaccine RTS,S/AS01(E) provides significant but partial protection from clinical malaria. On in vitro circumsporozoite protein (CSP) peptide stimulation and intra-cellular cytokine staining of whole blood taken from 407 5-17 month-old children in a phase IIb trial of RTS,S/AS01(E), we identified significantly increased frequencies of two CSP-specific CD4+ T cells phenotypes among RTS,S/AS01(E) vaccinees (IFNγ-IL2+TNF- and IFNγ-IL2+TNF+ CD4+ T cells), and increased frequency of IFNγ-IL2-TNF+ CD4+ T cells after natural exposure. All these T cells phenotypes were individually associated with reductions in the risk of clinical malaria, but IFNγ-IL2-TNF+ CD4+ T cells independently predicted reduced risk of clinical malaria on multi-variable analysis (HR = 0.29, 95% confidence intervals 0.15-0.54, p<0.0005). Furthermore, there was a strongly significant synergistic interaction between CSP-specific IFNγ-IL2-TNF+ CD4+ T cells and anti-CSP antibodies in determining protection against clinical malaria (p = 0.002). Vaccination strategies that combine potent cellular and antibody responses may enhance protection against malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Vacunas contra la Malaria , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Vacunación , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ensayos Clínicos Fase II como Asunto , Citocinas/sangre , Humanos , Lactante , Estimación de Kaplan-Meier , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Modelos de Riesgos Proporcionales , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Riesgo , Esporozoítos/inmunología
18.
PLoS One ; 7(12): e52939, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300828

RESUMEN

BACKGROUND: Although antibodies are critical for immunity to malaria, their functional attributes that determine protection remain unclear. We tested for associations between antibody avidities to Plasmodium falciparum (Pf) antigens and age, asymptomatic parasitaemia, malaria exposure index (a distance weighted local malaria prevalence) and immunity to febrile malaria during 10-months of prospective follow up. METHODS: Cross-sectional antibody levels and avidities to Apical Membrane Antigen 1 (AMA1), Merozoite Surface Protein 1(42) (MSP1) and Merozoite Surface Protein 3 (MSP3) were measured by Enzyme Linked Immunosorbent Assay in 275 children, who had experienced at least one episode of clinical malaria by the time of this study, as determined by active weekly surveillance. RESULTS: Antibody levels to AMA1, MSP1 and MSP3 increased with age. Anti-AMA1 and MSP1 antibody avidities were (respectively) positively and negatively associated with age, while anti-MSP3 antibody avidities did not change. Antibody levels to all three antigens were elevated in the presence of asymptomatic parasitaemia, but their associated avidities were not. Unlike antibody levels, antibody avidities to the three-merozoite antigens did not increase with exposure to Pf malaria. There were no consistent prospective associations between antibody avidities and malaria episodes. CONCLUSION: We found no evidence that antibody avidities to Pf-merozoite antigens are associated with either exposure or immunity to malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Malaria/inmunología , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Afinidad de Anticuerpos/inmunología , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Kenia , Masculino
19.
PLoS One ; 6(10): e25786, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998698

RESUMEN

BACKGROUND: RTS,S/AS01(E) is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%-72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection. METHODS AND FINDINGS: We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5-17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01(E) (NCT00380393). RTS,S/ AS01(E) vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα(+) CD4(+) T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01(E) vaccinees (HR = 0.64, 95%CI 0.49-0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62-1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01(E) vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62-0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα(+) CD4(+) T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model. CONCLUSIONS: RTS,S/AS01(E) induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα(+) CD4(+) T cells could account for the level of protection conferred by RTS,S/AS01(E). The correlation between CS-specific TNFα(+) CD4(+) T cells and protection needs confirmation in other datasets.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Linfocitos T/inmunología , Vacunación/métodos , Secuencia de Aminoácidos , Preescolar , Humanos , Lactante , Interferón gamma/biosíntesis , Interferón gamma/metabolismo , Interleucina-2/biosíntesis , Interleucina-2/metabolismo , Espacio Intracelular/metabolismo , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/química , Datos de Secuencia Molecular , Linfocitos T/citología , Linfocitos T/metabolismo , Factores de Tiempo , Vacunación/efectos adversos , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...